搜索

快到没朋友的YOLO v3有了PaddlePaddle 预训练模型

gecimao 发表于 2019-05-28 13:17 | 查看: | 回复:

  现在,快到没朋友的YOLO v3有PaddlePaddle实现了。相比原作者在 Darknet 实现的模型,PaddlePaddle 添加了其它一些模块,且精度提高了 5.9个绝对百分点。

  CV领域的核心问题之一就是目标检测(object detection),它的任务是找出图像当中所有感兴趣的目标(物体),确定其位置和大小(包含目标的矩形框)并识别出具体是哪个对象。Faster R-CNN及在其基础上改进的Mask R-CNN在实例分割、目标检测、人体关键点检测等任务上都取得了很好的效果,但通常较慢。YOLO 创造性的提出one-stage,就是目标定位和目标识别在一个步骤中完成。

  由于整个检测流水线是单个网络,因此可以直接在检测性能上进行端到端优化,使得基础YOLO模型能以每秒45帧的速度实时处理图像,较小网络的Fast YOLO每秒处理图像可达到惊人的155帧。YOLO有让人惊艳的速度,同时也有让人止步的缺陷:不擅长小目标检测。而YOLO v3保持了YOLO的速度优势,提升了模型精度,尤其加强了小目标、重叠遮挡目标的识别,补齐了YOLO的短板,是目前速度和精度均衡的目标检测网络。

  YOLO v3 的网络结构由基础特征提取网络、multi-scale特征融合层和输出层组成。

  特征提取网络。YOLO v3使用 DarkNet53作为特征提取网络:DarkNet53 基本采用了全卷积网络,用步长为2的卷积操作替代了池化层,同时添加了 Residual 单元,避免在网络层数过深时发生梯度弥散。特征融合层。为了解决之前YOLO版本对小目标不敏感的问题,YOLO v3采用了3个不同尺度的特征图来进行目标检测,分别为13*13,26*26,52*52,用来检测大、中、小三种目标。特征融合层选取 DarkNet产出的三种尺度特征图作为输入,借鉴了FPN(feature pyramid networks)的思想,通过一系列的卷积层和上采样对各尺度的特征图进行融合。输出层。同样使用了全卷积结构,其中最后一个卷积层的卷积核个数是255:3*(80+4+1)=255,3表示一个grid cell包含3个boundingbox,4表示框的4个坐标信息,1表示Confidence Score,80表示COCO数据集中80个类别的概率。

  PaddlePaddle是百度自研的集深度学习框架、工具组件和服务平台为一体的技术领先、功能完备的开源深度学习平台,有全面的官方支持的工业级应用模型,涵盖自然语言处理、计算机视觉、推荐引擎等多个领域,并开放多个领先的预训练中文模型。目前,已经被中国企业广泛使用,并拥有活跃的开发者社区。

  红脂大小蠹是危害超过 35 种松科植物的蛀干害虫,自 1998 年首次发现到 2004 年,发生面积超过 52.7 万平方公里 , 枯死松树达600 多万株。且在持续扩散,给我国林业经济带来巨大损失。传统监测方式依赖具有专业识别能力的工作人员进行实地检查,专业要求高,工作周期长。

  北京林业大学、百度、嘉楠、软通智慧合作面向信息素诱捕器的智能虫情监测系统,通过PaddlePaddle训练得到目标检测模型YOLO v3,识别红脂大小蠹虫,远程监测病虫害情况,识别准确率达到90%,与专业人士水平相当,并将原本需要两周才能完成的检查任务,缩短至1小时就能完成。

  运行样例代码需要Paddle Fluid的v 1.4或以上的版本。如果你的运行环境中的PaddlePaddle低于此版本,请根据安装文档中的说明来更新PaddlePaddle:

  下载预训练模型: 本示例提供darknet53预训练模型,该模型转换自作者提供的darknet53在ImageNet上预训练的权重,采用如下命令下载预训练模型。

  通过初始化 --pretrain加载预训练模型。同时在参数微调时也采用该设置加载已训练模型。请在训练前确认预训练模型下载与加载正确,否则训练过程中损失可能会出现NAN。

  模型评估是指对训练完毕的模型评估各类性能指标。本示例采用COCO官方评估。

  注意: 评估结果基于pycocotools评估器,没有滤除score 0.05的预测框,其他框架有此滤除操作会导致精度下降。

  模型推断可以获取图像中的物体及其对应的类别,infer.py是主要执行程序,调用示例如下。

本文链接:http://robynlynne.com/duixiangmoxing/387.html
随机为您推荐歌词

联系我们 | 关于我们 | 网友投稿 | 版权声明 | 广告服务 | 站点统计 | 网站地图

版权声明:本站资源均来自互联网,如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

Copyright @ 2012-2013 织梦猫 版权所有  Powered by Dedecms 5.7
渝ICP备10013703号  

回顶部